《Java并发编程的艺术》读书笔记(二)

笔记内容包含第四章~第六章

线程简介

Java线程状态变迁

由上图中可以看到,线程创建之后,调用start()方法开始运行。当线程执行wait()方法之后,线程进入等待状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态,而超时等待状态相当于在等待状态的基础上增加了超时限制,也就是超时时间到达时将会返回到运行状态。
当线程调用同步方法时,在没有获取到锁的情况下,线程将会进入到阻塞状态。
线程在执行Runnable的run()方法之后将会进入到终止状态。

Java将操作系统中的运行和就绪两个状态合并称为运行状态。
阻塞状态是线程阻塞在进入synchronized关键字修饰的方法或代码块(获取锁)时的状态,但是阻塞在
java.concurrent包中Lock接口的线程状态却是等待状态,因为java.concurrent包中Lock接口对于阻塞的实现均使用了LockSupport类中的相关方法。

Daemon线程

Daemon线程是一种支持型线程,因为它主要被用作程序中后台调度以及支持性工作。这意味着,当一个Java虚拟机中不存在非Daemon线程的时候,Java虚拟机将会退出,但是在Java虚拟机退出时Daemon线程中的finally块并不一定会执行。
可以通过调用Thread.setDaemon(true)将线程设置为Daemon线程。

注意: Daemon属性需要在启动线程之前设置,不能在启动线程之后设置。在构建Daemon线程时,不能依靠finally块中的内容来确保执行关闭或清理资源的逻辑。

理解中断

中断可以理解为线程的一个标识位属性,它表示一个运行中的线程是否被其他线程进行了中断操作。
中断好比其他线程对该线程打了个招呼,其他线程通过调用该线程的interrupt()方法对其进行中断操作。

线程通过检查自身是否被中断来进行响应,线程通过方法isInterrupted()来进行判断是否被中断,也可以调用静态方法Thread.interrupted()对当前线程的中断标识位进行复位。如果该线程已经处于终结状态,
即使该线程被中断过,在调用该线程对象的isInterrupted()时依旧会返回false。

从Java的API中可以看到,许多声明抛出InterruptedException的方法(例如Thread.sleep(longmillis)方法)
这些方法在抛出InterruptedException之前,Java虚拟机会先将该线程的中断标识位清除,然后抛出InterruptedException,此时调用isInterrupted()方法将会返回false。

1
2
3
4
5
6
7
8
public static final void second(long seconds) {
try {
TimeUnit.SECONDS.sleep(seconds);
} catch (InterruptedException e) {
// 抛出InterruptedException之前会清除中断标识位
System.out.println("throws intercepted exception");
}
}

过期的suspend()、resume()和stop()方法

不建议使用的原因主要有:以suspend()方法为例,在调用后,线程不会释放已经占有的资源(比如锁),而是占有着资源进入睡眠状态,这样容易引发死锁问题。同样,stop()方法在终结一个线程时不会保证线程的资源正常释放,通常是没有给予线程完成资源释放工作的机会,因此会导致程序可能工作在不确定状态下。

因为suspend()、resume()和stop()方法带来的副作用,这些方法才被标注为不建议使用的过期方法,而暂停和恢复操作可以用后面提到的等待/通知机制来替代。

优雅的关闭线程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
public class Shutdown {
public static void main(String[] args) throws Exception {
Runner one = new Runner();
Thread countThread = new Thread(one, "CountThread");
countThread.start();
// 睡眠1秒,main线程对CountThread进行中断,使CountThread能够感知中断而结束
TimeUnit.SECONDS.sleep(1);
countThread.interrupt();
System.out.println("Count Thread isInterrupted: " + countThread.isInterrupted());

Runner two = new Runner();
countThread = new Thread(two, "CountThread");
countThread.start();
// 睡眠1秒,main线程对Runner two进行取消,使CountThread能够感知on为false而结束
TimeUnit.SECONDS.sleep(1);
two.cancel();
System.out.println("Count Thread isInterrupted: " + countThread.isInterrupted());
}

private static class Runner implements Runnable {
private long i;
private volatile boolean on = true;

@Override
public void run() {
while (on && !Thread.currentThread().isInterrupted()) {
i++;
}
System.out.println("Count i = " + i);
}

public void cancel() {
on = false;
}
}
}

示例在执行过程中,main线程通过中断操作和cancel()方法均可使CountThread得以终止。
这种通过标识位或者中断操作的方式能够使线程在终止时有机会去清理资源,而不是武断地将线程停止,因此这种终止线程的做法显得更加安全和优雅。

线程间通讯

Java支持多个线程同时访问一个对象或者对象的成员变量,由于每个线程可以拥有这个变量的拷贝(虽然对象以及成员变量分配的内存是在共享内存中的,但是每个执行的线程还是可以拥有一份拷贝,这样做的目的是加速程序的执行,这是现代多核处理器的一个显著特性),所以程序在执行过程中,一个线程看到的变量并不一定是最新的。

关键字volatile可以用来修饰字段(成员变量),就是告知程序任何对该变量的访问均需要从共享内存中获取,而对它的改变必须同步刷新回共享内存,它能保证所有线程对变量访问的可见性

关键字synchronized可以修饰方法或者以同步块的形式来进行使用,它主要确保多个线程在同一个时刻,只能有一个线程处于方法或者同步块中,它保证了线程对变量访问的可见性和排他性

等待/通知机制,是指一个线程A调用了对象obj的wait()方法进入等待状态,而另一个线程B调用了对象obj的notify()
或者notifyAll()方法,线程A收到通知后从对象obj的wait()方法返回,进而执行后续操作。

上述两个线程通过对象obj来完成交互,而对象上的wait()和notify/notifyAll()的关系就如同开关信号一样,用来完成等待方和通知方之间的交互工作。

Java中的锁

Lock接口

Lock的使用的方式:

1
2
3
4
5
6
7
Lock lock = new ReentrantLock();
lock.lock();
try {
...
} finally {
lock.unlock();
}

在finally块中释放锁,目的是保证在获取到锁之后,最终能够被释放。

不要将获取锁的过程写在try块中,因为如果在获取锁(自定义锁的实现)时发生了异常,异常抛出的同时,也会导致锁无故释放。

同步器 AbstractQueuedSynchronizer

同步器是实现锁(也可以是任意同步组件)的关键,在锁的实现中聚合同步器,利用同步器实现锁的语义。

可以这样理解二者之间的关系:

  • 锁是面向使用者的,它定义了使用者与锁交互的接口(比如可以允许两个线程并行访问),隐藏了实现细节;
  • 同步器面向的是锁的实现者,它简化了锁的实现方式,屏蔽了同步状态管理、线程的排队、等待与唤醒等底层操作。

锁和同步器很好地隔离了使用者和实现者所需关注的领域。

独占式同步状态获取和释放过程总结:

在获取同步状态时,同步器维护一个同步队列,获取状态失败的线程都会被加入到队列中并在队列中进行自旋;
移出队列(或停止自旋)的条件是前驱节点为头节点且成功获取了同步状态。在释放同步状态时,同步器调用
tryRelease(int arg)方法释放同步状态,然后唤醒头节点的后继节点。

重入锁 ReentrantLock

顾名思义,就是支持重进入的锁,它表示该锁能够支持一个线程对资源的重复加锁。
除此之外,该锁还支持获取锁时的公平和非公平性选择。

ReentrantLock虽然没能像synchronized关键字一样支持隐式的重进入,但是在调用lock()方法时,已经获取到锁的线程,能够再次调用lock()方法获取锁而不被阻塞。

这里提到一个锁获取的公平性问题,如果在绝对时间上,先对锁进行获取的请求一定先被满足,那么这个锁是公平的,反之,是不公平的。公平的获取锁,也就是等待时间最长的线程最优先获取锁,也可以说锁获取是顺序的。ReentrantLock提供了一个构造函数,能够控制锁是否是公平的。

事实上,公平的锁机制往往没有非公平的效率高,但是,并不是任何场景都是以TPS作为唯一的指标,公平锁能够减少“饥饿”发生的概率,等待越久的请求越是能够得到优先满足。

读写锁

排他锁(如ReentrantLock),这些锁在同一时刻只允许一个线程进行访问,而读写锁在同一时刻可以允许多个读线程访问,但是在写线程访问时,所有的读线程和其他写线程均被阻塞。读写锁维护了一对锁,一个读锁和一个写锁,通过分离读锁和写锁,使得并发性相比一般的排他锁有了很大提升。

一般情况下,读写锁的性能都会比排它锁好,因为大多数场景读是多于写的。在读多于写的情况下,读写锁能够提供比排它锁更好的并发性和吞吐量。Java并发包提供读写锁的实现是ReentrantReadWriteLock

写锁是一个支持重进入的排它锁。如果当前线程已经获取了写锁,则增加写状态。如果当前线程在获取写锁时,读锁已经被获取(读状态不为0)或者该线程不是已经获取写锁的线程,则当前线程进入等待状态。

读锁是一个支持重进入的共享锁,它能够被多个线程同时获取,在没有其他写线程访问(或者写状态为0)时,读锁总会被成功地获取,而所做的也只是(线程安全的)增加读状态。如果当前线程已经获取了读锁,则增加读状态。如果当前线程在获取读锁时,写锁已被其他线程获取,则进入等待状态。

锁降级

锁降级指的是写锁降级成为读锁。锁降级是指当前拥有写锁,再获取到读锁,随后释放(先前拥有的)写锁的过程。

并发容器和框架

ConcurrentHashMap

ConcurrentHashMap是线程安全且高效的HashMap。

在并发编程中使用HashMap可能导致程序死循环。而使用线程安全的HashTable效率又非常低下,基于以上两个原因,便有了ConcurrentHashMap的登场机会。

(1)线程不安全的HashMap

在多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。

HashMap在并发执行put操作时会引起死循环,是因为多线程会导致HashMap的Entry链表形成环形数据结构,一旦形成环形数据结构,Entry的next节点永远不为空,就会产生死循环获取Entry。

(2)效率低下的HashTable

HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法,其他线程也访问HashTable的同步方法时,会进入阻塞或轮询状态。

如线程1使用put进行元素添加,线程2不但不能使用put方法添加元素,也不能使用get方法来获取元素,所以竞争越激烈效率越低。

(3)ConcurrentHashMap的锁分段技术可有效提升并发访问率

HashTable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问HashTable的线程都必须竞争同一把锁,假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术

首先将数据分成一段一段地存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。

ConcurrentLinkedQueue

实现一个线程安全的队列有两种方式:一种是使用阻塞算法,另一种是使用非阻塞算法。

使用阻塞算法的队列可以用一个锁(入队和出队用同一把锁)或两个锁(入队和出队用不同的锁)等方式来实现。
非阻塞的实现方式则可以使用循环CAS的方式来实现

ConcurrentLinkedQueue是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行排序,当我们添加一个元素的时候,它会添加到队列的尾部;当我们获取一个元素时,它会返回队列头部的元素。

它采用了“wait-free”算法(即CAS算法)来实现,该算法在Michael&Scott算法上进行了一些修改。

阻塞队列

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作支持阻塞的插入和移除方法。

1)支持阻塞的插入方法:意思是当队列满时,队列会阻塞插入元素的线程,直到队列不满。

2)支持阻塞的移除方法:意思是在队列为空时,获取元素的线程会等待队列变为非空。

阻塞队列常用于生产者和消费者的场景,生产者是向队列里添加元素的线程,消费者是从队列里取元素的线程。阻塞队列就是生产者用来存放元素、消费者用来获取元素的容器。

JDK 7提供了7个阻塞队列,如下:

  • ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列。
  • LinkedBlockingQueue:一个由链表结构组成的无界阻塞队列。
  • PriorityBlockingQueue:一个支持优先级排序的无界阻塞队列。
  • DelayQueue:一个使用优先级队列实现的无界阻塞队列。
  • SynchronousQueue:一个不存储元素的阻塞队列。
  • LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
  • LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。

通知模式,就是当生产者往满的队列里添加元素时会阻塞住生产者,当消费者消费了一个队列中的元素后,会通知生产者当前队列可用。

Fork/Join框架

Fork/Join框架是Java 7提供的一个用于并行执行任务的框架,是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。

Fork就是把一个大任务切分为若干子任务并行的执行,Join就是合并这些子任务的执行结果,最后得到这个大任务的结果。

fork/join运行流程图

图源:聊聊并发(八)——Fork/Join 框架介绍

工作窃取(work-stealing)算法是指某个线程从其他队列里窃取任务来执行。

优点:充分利用线程进行并行计算,减少了线程间的竞争。

缺点:在某些情况下还是存在竞争,比如双端队列里只有一个任务时。并且该算法会消耗了更多的系统资源,比如创建多个线程和多个双端队列。

图源:图解 Fork/Join

以上,如有问题欢迎提出!

如果对您有所帮助,欢迎投食!
0%